Seeds of Science/Roots of Reading: A Model of Distributed Literacy

Jacqueline Barber

Lawrence Hall of Science University of California, Berkeley

P. David Pearson

Graduate School of Education University of California, Berkeley

Set out to learn:

- In what ways can reading, writing, listening, and speaking support science learning?
- How can the context of science support literacy learning?

Notable Characteristics:

- Research and development
- Science and literacy
- Team with multiple expertise (educational researchers, curriculum developers, professional developers, scientists and practitioners)

Seeds of Science Roots of Reading

- Curriculum for Grades 2-5
- Funded mainly by National Science Foundation
- Complete by Fall 2010

The SEEDS and ROOTS Approach involves students in:

- Deep forays into learning about the natural world
- Searching for evidence through firsthand experiences and text in order to construct more and more accurate and complete understandings of the natural world
- Engaging in written and oral discourse with the goal of communicating evidence-based explanations, and evaluating and revising the explanations

In Use

- Implementation pilots in 13 states (CA, GA, KY, NH, MA, MN, NJ, NY, OH, TN, TX, UT, VA)
- As a science program with extra benefits (Cleveland—90 teachers in 18 schools)
- As a science and literacy program (McPherson School in NAPA—charter school)
- As a supplementary literacy program (Minneapolis—80 summer school sites)
- As an ELD program (Santa Barbara, CA)

Seeds & Roots @ middle school

- For Grades 6-8 (funding by the Bill and Melinda Gates Foundation)
- Just begun work, in Jan 2010

Structure of the Session:

- Share information about the approach and effectiveness of SEEDS/ROOTS elementary program
- Close look at approaches (and common pitfalls) to integrating science and literacy
- Early thoughts about how we plan to apply what we've learned to the middle school context

An Example from Designing Mixtures

A 4-week unit for 2nd-3rd graders

- Properties of substances
- Mixtures
- Dissolving
- Design process

See the relevance

Read

Students read a book that connects the unit to real world problems

Set up sticky tests

Do

Students test ingredients and mixtures to learn more about possible glue ingredients and to select those that are stickiest

Conduct sticky tests

Do

Students collect firsthand evidence about which possible glue ingredients are stickiest

Reflect

Students evaluate results and decide which ingredients to use to make glue

Read about the work of other scientists

Read

Students read a book that models the design process

Reflect

Students reflect on the design process used in the book, and how they could use this same propertydriven design process to refine their glue mixtures

Set up strength tests

Do

Students conduct more ingredient tests, this time focusing on the property of strength

Conduct strength tests

Do

Students collect firsthand evidence about which ingredients are strongest

Write

Students record their results

Search for additional evidence

Read

Students search for secondhand evidence about ingredients that might have the properties needed to make good glue

Evaluate evidence and make decisions

Reflect

Students evaluate what they have learned about ingredients from both first and secondhand sources and make decisions about what combination of ingredients best meets their design goals

Ingredient	Evidence from Handbook	Evidence from Strength Test
egg Whites	Page 17- can stick things together page 17- used as a glue	0,0,6, 0,0
flour	page 19- sticky when mixed with water page 18- hard when dry	11,12, 9,10,13
corn syrup	page-15- can make a mixture sticky when dry	7,9,13,10,9
gelatin	page 21- can hold ingredients tegether	9-11,8-11,7,9,13

Create own glue recipe

Write

Students write procedures for making the best glue based on the evidence they have collected so far

Revise

Then they revise their procedures based on feedback from a buddy who tries to make glue following the procedure

Read about other work from "the field"

Read

Students read about a food scientist who designs and tests new jelly beans

Reflect

Students reflect on how their design process is like that used by the jelly bean scientist

Read-Do-Talk-Read-Talk-Do-Write-Read-Talk-Write-Talk-Do

- Read-it, Write-it, Do-it, Talk-it
- Literacy and Science are inextricably integrated
- 100% science; literacy as a tool
- Text is used to play a variety of roles in supporting inquiry science

Role: Provide Context

- Introduce domain and/or context
- Invite students to engage with the context
- Connect to the world outside the classrooms

Role: Model

- Model inquiry
 processes
- Model nature of science
- Model literacy processes

Role: Support secondhand investigations

 Provide data for students to interpret

1 4 4 V	Substance	Properties		
¥ ¥		Looks shiny	Makes spikes	Notes
* *	Shampoo	yes	no	foamy
\$ \$ A	Shaving cream	no	yes	very foamy
v v	Egg whites	yes	no	too thick
0	Corn syrup	no	no	too thin
*	Lime gelatin	yes	yes	green
N + +				smells like lime
7	Glue stick	no	yes	hard when dry

Jess **compared** the substances. Only lime gelatin made his hair shiny and spiky. But there were problems with the lime gelatin. Who wants green hair? Who wants to smell like lime?

9

Role: Support firsthand investigations

- Provide information that facilitates firsthand investigations
- Support students in making sense of firsthand investigations
- Inspire firsthand
 investigations

Role: Deliver Content

- Deliver science
 information
- Provide information and explanation about unobservable phenomena

Summary of Roles Text in Supporting Inquiry Science

Provide Context

Deliver Content

Modeling

Supporting Second-hand Investigations

Supporting Firsthand Investigations

Authenticity in Science

Seeds and Roots model of integrated science and literacy instruction:

Includes a balance of learning modalities DO-TALK-READ-WRITE

Employs reading, writing, and talk in ways that are authentic to science

Provides students (and teachers) with explicit instruction in literacy skills and strategies

What are the advantages and disadvantages of this model compared to typical science instruction? Growing number of Research Results

- Efficacy Studies (Joan Herman and Pete Goldschmidt of UCLA's CRESST)
 - Grades 2-3
 - Grades 3-4 (preliminary results available)
 - Grades 4-5 (still underway)
- Research Studies (Mark Girod; Western Oregon University and David Hanauer; Indiana University of Pennsylvania)

Increasing Evidence that students in SEEDS classrooms are outpacing students in content-comparable classrooms on:

- knowledge of science concepts
- knowledge of science vocabulary
- science writing
- using evidence to support explanations
- (reading comprehension)

Average Effect Size (across all studies to date)

A student in the 50th percentile of a Seeds/Roots classroom would score higher on measures of science knowledge than 73% of the students in a content comparable business as usual classroom. This is equivalent to an effect size of .61.

Seeds and Roots classrooms

50th percentile

Content comparable business as usual classrooms

50th percentile 73rd percentile

Effective for students at both ends of the Achievement Continuum

- 1/3 of the classrooms in the Grade 2-3 efficacy study had 30% or more English language learners
- For both Grade 2-3 units in the study, students who scored lowest on pre-tests made comparably-sized gains as students who scored highest on pre-tests
- Anecdotally, teachers spoke about how ELL students in their classrooms responded very well to the integrated instruction and were engaged in reading, writing, and speaking in SEEDS units more than in other settings

D

D

Effect size of Seeds/Roots Curriculum for EL students READING COMPREHENSION

D

= .56

Thinking more closely about integrating content areas

Thematic	Use overarching themes to create connections among domains
Interdisciplinary	Content or processes in one domain are used to support learning in another
Integrated	Emphasis on two or more domains is balanced

Stoddart, Pinal, Latzke, and Canady; 2002

Various purposes for integrating science and literacy

1) As a better way to learn the content of science

3) To provide a context for learning and using literacy skills

3) To engage in the broader practices of science

First Purpose: As a better way to learn the content of science

- Built on the idea that students need repeated opportunities to encounter ideas
- Provide access to learning in different modalities—reading, writing, listening, speaking

Additive Integration

- Example:
 - Write a paragraph about...
 - Write a story about...
 - Read this book about...
- Provide ideas for extensions to the main body of science instruction
- Tacked on at the beginning or end of activities

Synergistic Integration

- Where students are reading, writing, listening, and speaking as part of their investigation of the natural world
- Focus on the "sweet spots" between science and literacy
- Hard to tell what is science and what is literacy

Example of additive integration of reading and science

- Students investigate with magnets
- Students read about magnets
- Students write what they learned about magnets

Example of synergistic integration

- Students predict what objects are attracted to a magnet and test their predictions
- Students search for evidence in text about the metal composition of the objects they tested
- Based on this new evidence, students make claims about what sticks to magnets and write explanations incorporating their claims and evidence

Synergy between science inquiry and reading comprehension

Firsthand Investigations

Reading Text

Both are enacted to discover something

Science inquiry and reading comprehension are both the central meaning-making processes in their respective domains

Both rely on a preponderance of evidence to test claims

Both rely on similar strategies

Example of synergistic integration use of shared strategies

- Students make inferences based on evidence they find:
 - In firsthand observations
 - In text
- Students reflect on this powerful thinking strategy and how its use is similar and different when used in different contexts

Additive versus Synergistic Integration

Additive

Synergistic

Second Purpose: To provide a context for learning and using literacy skills

- Built on the idea that students need opportunities to use literacy skills for real purposes
- Language and literacy are tools for learning about something

Inauthentic versus Authentic integration of literacy

Inauthentic

Write a story of a raindrop as it falls from the sky.

Authentic

Write your forecast for next week's weather using evidence from this weather map to support your claim

Third Purpose: To engage students in the broader practices of science

- Built on the idea that different domains encompass different ways of reading, writing, listening and speaking
- Reading, writing and talking like scientists do is essential to "knowing science"
- These are practices that are part of science and need to be learned

2000 to present J

Disciplinary Literacies?

The literacy skills students need to be successful in learning in a subject matter discipline

- ✓ Science vocabulary
- ✓ Kinds of text features
- ✓ Ways of reading
- ✓ Structure of information
- ✓ What kind of evidence is privileged

Supported by NRC report

Taking Science to School (NRC: 2007) redefines what science proficiency is from just a view on content and inquiry to one that encompasses the broader practices of science including:

 \checkmark Science as a way of doing, thinking, talking, reading, and writing

✓ Understanding the nature and development of scientific knowledge

✓ Knowing the norms for presenting scientific arguments and evidence

Lots of evidence from the literacy perspective as well

- Carnegie Council on Advancing Adolescent Literacy (2009)
- Lee & Spratley (2010)
- National Governors Association (2006)
- Graham and Perin (2007)
- Short and Fitzsimmons (2007)
- Shanahan and Shanahan (2008)
- Snow and Biancarosa (2003, 2004)

Basic literacy: alphabetic principles, print concepts, high frequency words, decoding

Are Disciplinary Literacy Skills Assumed or Taught?

Provide Practice

- Many activities in content area learning assume that students know the literacies that are specific to the domain:
 - Reading science text
 - Writing science text
 - Participating in science talk
 - Interpreting visual representations

and provide only opportunities for practice

Are Disciplinary Literacy Skills Assumed or Taught?

Provide Explicit Instruction and Practice

- Activities which provide:
 - explicit instruction,
 - scaffolded opportunities to practice, and
 - gradual release of responsibility to students
 - prepare all students for success in the domain

Are Disciplinary Literacy Skills Assumed or Taught?

Provide Practice

Provide Explicit Instruction and Practice

Seeds/Roots approach to science and literacy integration

Synergistic!

Authentic!

Explicit instruction as well as practice in using disciplinary literacy skills

Growing Seeds/Roots to meet the Needs of Middle Schoolers

- Greater sophistication of content
- Greater range of student abilities and prior knowledge
- Decreased motivation and engagement
- Increased importance of peers
- Increased need for choice

Elementary

Week 1	Week 2	Week 3	Week 4

Design of Units

Middle School

D

Elementary One book per week: individual and partner reading

Week 1	Week 2	Week 3	Week 4
1 book	1 book	1 book	1 book

TEXT SETS

+ 1 reference book

Systematic introduction and use of vocabulary in texts

Increasing lexical and ______> conceptual difficulty

Middle School

Many short texts: shared texts as well as student choice for individual/group reading + 1 reference book

_ (Week 1	Week 2	Week 3	Week 4	Week 5	Week 6
Texts		10-20	10-20	10-20	10-20	2	2
vary		readings	readings	readings	readings		
Systematic introduction and use of vocabulary in texts							
Increasing lexical and \longrightarrow							

conceptual difficulty

TEXT ROLES

TEXT ROLE	Elementary Examples	Middle School Examples
Set context	What if Rain Boots Were Made of Paper?	
Provide content	Handbook of Interesting Ingredients	
Model Processes/Products/Disp ositions	Jess Makes Hair Gel	
Support Firsthand Investigations	Handbook of Interesting Ingredients	
Support Secondhand Investigations	Jess Makes Hair Gel	

TEXT ROLES

TEXT ROLE	Elementary Examples	Middle School Examples
Set context	What if Rain Boots Were Made of Paper?	Connects content to everyday
Provide content	Handbook of Interesting Ingredients	Field guide
Model Processes/Products/Disp ositions	Jess Makes Hair Gel	Scientists profile; Research brief
Support Firsthand Investigations	Handbook of Interesting Ingredients	Reference book
Support Secondhand Investigations	Jess Makes Hair Gel	Primary source documents

TEXT ROLES

TEXT ROLE	Elementary Examples	Middle School Examples
Set context	What if Rain Boots Were Made of Paper?	Connects content to everyday
Provide content	Handbook of Interesting Ingredients	Field guide
Model Processes/Products/Disp ositions	Jess Makes Hair Gel	Scientists profile; Research brief
Support Firsthand Investigations	Handbook of Interesting Ingredients	Reference book
Support Secondhand Investigations	Jess Makes Hair Gel	Primary source documents
Stimulate Critique/Debate		Newspaper article

TYPES OF TEXTS Authenticity Gradient

Most Authentic (to science)

Science texts that are used and/or created by scientists

Science texts encountered in life

Science texts encountered in secondary school settings

Texts that are not authentic science texts but can engage/motivate readers and/or fulfill specific curricular goals

Least Authentic (to science)

Seeds of Science/Roots of Reading Follow our progress!

scienceandliteracy.org